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Abstract

For a harmonic function on a tree with random walk whose transition
probabilities are bounded between two constants in (0,1/2), it is known
that the radial and stochastic properties of convergence, boundedness and
finiteness of energy are all a.s. equivalent. We prove here that the analo-
gous non-tangential properties are a.e. equivalent to the above ones.

We are interested in the comparison between some non-tangential asymp-
totic properties of harmonic functions on a tree and the corresponding radial
properties, using analogous stochastic ones. We proved in a previous work [6],
under a reasonable uniformity hypothesis, the almost sure equivalence between
different radial and stochastic properties: convergence, boundedness and finite-
ness of the energy. The probabilistic-geometric methods, adaptated from those
we used in the setting of manifolds of negative curvature [5], were flexible and
presumed to extend to the non-tangential case for trees.

A recent article [2] shows by combinatorial methods the equivalence of the
three non-tangential corresponding properties in the particular case of homoge-
neous trees. It seems to be time to show explicitely that our methods give in a
swift way the non-tangential results for general trees satisfying the uniformity
hypothesis above.

We use our previous results to compare the non-tangential notions with the
radial and stochastic ones: we prove on one hand that the stochastic convergence
implies the non-tangential convergence in the section 3 and on the other hand
that the non-tangential boundedness implies almost surely the finiteness of the
non-tangential energy in the section 4. The notations are fixed in the section 1
and our main result is stated in the section 2.

*Key-words : harmonic functions — trees — Fatou theorem — random walks.
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1 Setting

Let us briefly fix the notations (for details see [6]). We consider a tree (S, A)
i.e. a non-oriented, locally finite, connected and simply connected graph with
vertices in S and edges in A. We will use the usual notions of path, distance
and geodesic path and note xz ~ y iff (z,y) € A.

We also consider a transient random walk (X,,), on S such that the transi-
tion probability p(x,y) > 0 iff # ~ y. Denote by P, the distribution of the walk
starting from x and by p,(z,y) the probability P,[X,, = y] of reaching y from
x in n steps.

The Green function G(z,y) = > o- pn(x,y) is finite by transience. Denote
by H(z,y) the probability of reaching y starting from x. If z is on the geodesic
path [z, y], the simple connectivity implies

H(z,y) = H(z,2)H(z,y) and  G(z,y) = H(z,2)G(z,9). (1)

If U C S, the Green function of U, defined on U x U, is the expectation of the
number of times the walk starting from « hits y before exiting U.

The Laplacian of a function f on S is Af(z) = E,[f(X1)] — f(z). The
function f is harmonic if Af = 0.

Let u be a fixed harmonic function. The stochastic energy of u is J*(u) =
>oreo (Au?) (X)) (non-negative terms). The events £**, N** and J** are
defined respectively by the convergence of (u(Xy)),, its boundedness and the

finiteness of the stochastic energy. The Martingale theorem implies J** C L
(Pg-almost sure inclusion) [6]. It is known since P. Cartier [3] that geometric and
Martin compactifications agree and the random walk converges almost surely
to a point of the boundary 0S. The exit law starting from x is the harmonic
measure p, and p = (pg), is a familly of equivalent measures. Conditioning
by Doob’s method of h-processes gives probabilities P? (ending at #). Asymp-
totic events verify 0-1 law and we define sets £* = {6 € 9S|PY(L**) =1},
N* ={0€dS|PON*) =1}, J* = {0 € 9S|PS(T**) =1}, which determine
stochastic notions of convergence, boundedness and finiteness of the energy at
6 € 0S. For § € L£*, limu(X,) is P/-a.s. constant (independent from z) and
called the stochastic limit at 6.

Fix a base point o. For 8 € 35, gy is the geodesic ray from o to 6 and for
c €N, TY = {y € S|d(y,v) < c} is a non-tangential tube. Let u be a harmonic
function. For ¢ € N, its c-non-tangential energy at 0 is J?(u) = > yere Au?(y)
and its radial energy at 0 is JO(u) = J§(u) = Y po,Au’(ye(k)). There is
radial convergence, boundedness or finiteness of the energy depending wether
(u(v9(n)))n converges, is bounded or has finite radial energy. There is non-
tangential convergence of u at 6 if for all ¢ € N, u(y) has a limit when y goes
to 6 staying in I'?. There is non-tangential boundedness (resp. finiteness of the
energy) if for all ¢ € N, u is bounded on I'? (resp. J¢(u) < +00).



2 Main result

We now suppose (H): Je > 0,3n > 0,Vz ~ y,e < p(z,y) < 3 — 1, a discrete
analogue of the pinched curvature for manifolds. It also forces at least three
neighbors for each vertex, and ensures transience. We proved in [6]:

Theorem 2.1 For a harmonic function u on a tree with random walk satisfying
(H), the notions of radial convergence, radial boundedness, radial finiteness of
the energy, stochastic convergence, stochastic boundedness, stochastic finiteness
of the energy, are p-almost equivalent.

We prove here the following theorem:

Theorem 2.2 Under the same hypotheses, the notions of non-tangential con-
vergence, non-tangential boundedness and non-tangential finiteness of the energy
are p-almost equivalent to the notions above.

Considering the trivial implications, it is sufficient to prove that stochastic
convergence implies non-tangential convergence and non-tangential bounded-
ness implies almost surely non-tangential finiteness of the energy.

3 Stochastic implies NT convergence

The first implication needs the following lemma due to A. Ancona in a general
setting [1], but easily proved here by simple connectivity:

Lemma 3.1 If (z,), is a sequence converging non-tangentially to 0 € 35S, the
walk hits P?-a.s. infinitely many ..

Let us see how this lemma helps. Assume that the harmonic function u has
a stochastic limit [ € R at 6 but does not converge non-tangentially towards [
at 6. There exists 6 > 0 and a sequence (x,), converging non-tangentially to
6 such that |u(z,) — | > § for all n. As the random walk (X}); hits P-a.s.
infinitely many x,, by the lemma, one can extract a subsequence (Xj;); such
that [u(Xy,) — 1| > 6 for all j. Hence, P/-almost surely, the function u does not
converge towards [ along (X} ), which leads to a contradiction.

Le us now prove the lemma. Recall that the principle of the method of Doob’s
h-processes is to consider a new Markov chain defined by p?(z,y) = gzgz% p(z,y)

where the Martin kernel Ky(z) is defined as lim,_.g ggizg (see for example [4]).

This formula leads to analogous fomulae for the p? and the associated functions
HY and G?. Consider for a fixed n the projection ¥, of z,, on the geodesic ray
o (see [6]). As the random walk starting from o and conditioned to end at
0 hits almost surely y,, due to the tree structure, the strong Markov property
gives H%(0,2,) = H(yn, ) = MH(ymxn). By definition of the Martin

Ko (yn)
K n . G(zn,
KZEZHS = lim, ¢ % and G(zn,y) = H(zn, yn)G(yn,y) as soon as

Yn € [Tn,y], 50 H?(0,2,) = H(20,Yn)H (Yn, Tn). The distance between x,, and

kernel,



Yn is bounded as (z, ), converges non-tangentially to 6, hence the last product
is bounded from below by a constant C' > 0 using (). By Fatou’s lemma, the
probability conditioned to end at 8 of hitting infinitely many z,, is not smaller
than C' and the asymptotic 0-1 law ensures that it equals 1, which completes
the lemma’s proof.

4 NT boundedness implies finite NT energy

Denoting N, = {0 € dS|supry |u| < +oo} and J. = {0 € 9S|J? (u) < +o0}, we

will show that for all c € N, N.y1 C J., which will give the wanted result by
monotonous intersection. Let us write Noy1 = Uyen N1, where

N, = {eeas

sup|u|§N}.
6

L

By countability it is sufficient to prove that for all NV, NCJYH C Je. Let us fix
N € N. Denote I' = Uee/\ﬂil Fg and 7 the exit time from I'. As

n—1
M, =u®(X,) = > Au(Xy)
k=0

is a martingale (see [6]), Doob’s stopping time theorem for the bounded exit
time 7 A n gives E, [M;r,] = E,[Mo] = u?(0) > 0, hence

TANn—1

E,| Y Aut(Xy)
k=0

S Eo [u2(XT/\n)] .

As X, n is at distance at most 1 from I, it lies in a tube I'Y, | where § € N,

and |u(X,an)| < N. When n goes to co, monotonous convergence (Au? > 0)
and the desintegration formula (see [6]) give then, for p-almost all 6 € 95,

T—1

> AuP(Xy)

k=0

Eg < +00.

Let us use a conditioned version of formula 2 from [6], which will be proved
later :

Lemma 4.1 For a function ¢ >0 on I" and 7 the exit time of T,

E9

Z_: @(Xk)] = ¢(y)Gr(o,y)Ko(y).

k=0 yer



This lemma implies that for y-almost all 6 € 95, 3 - Au?(y)Gr(o,y) Ko (y)
is finite. In order to get an energy, we will show that Gr(o,y)Ky(y) is bounded
from below using the two following lemmas. The first one is due to A. Ancona [1]
but has a very simple proof in the present context of trees. The second one
enables comparison between Gr and G.

Lemma 4.2 Ve € N,Ja > 0,Y0 € 95,y € I'?, G(o,y)Ky(y) > a
Lemma 4.3 For U C S containing T'% and 7 the exit time of U,

GU(O7 y)

=Plr = .
yert.y—o G(o,y) o7 = toc]

By lemma 4.2, for p-almost all 6 € N2,

ZA Groy)<+oo.

jero G(o,y)

If we show that for p-almost all € N, P/[r = +o0] > 0, lemma 4.3 gives

N, C J.. The proof of that fact is the same as in the analogous radial proof 6]
which completes the theorem’s proof.
Let us now prove the lemmas. Concerning lemma 4.1, using Fubini,

T—1 0
Z(p(Xk)] =Y B [o(Xk)1ken)] -
k=0

k=0

E9

The random variable ¢(X%)1(r<r) being measurable with respect to the o-
algebra generated by (X;);<x (see [6]) and using formula 2 from [6], the expec-
tation above equals

> B, [o(Xi)l(raer)Ko(Xi)] = Eo | 0(X)1(ecr) Ko(Xi)
k=0 k=0
=Y o(y)Gr(o,y) Ko(y),
yel

which finishes the proof of lemma 4.1.
Let us prove lemma 4.2. Denote 7(y) the projection of y on ~ (see [6])
and remark that for z € (7 (y),0), G(o,2) = H(o,7(y))G(n(y), z) and G(y,z) =

G(y,z T
H(y,7(y))G(n(y), z) by formula 1. Hence Gg,zg = ggz Trgg) doe;(not( c)i)epend
— Y,y

anymore on z and its limit when z goes to 6 is then Ky(y) = Tonty) BY

formula 1,

Glo,y)Ko(y) = H(y,7(y))



But G(y,y) > p2(y,y) > 3¢* and H(y,7(y))H(n(y),y) > £* by (H) and
d(y,m(y)) < e, which finishes the proof of lemma 4.2.
Let us prove lemma 4.3 :

GU(Ov y) = G(07 y) - EO[G(XT7 y)1(7'<+oo)]
G T

and by definition of Martin’s kernel, if we could switch the limit and expectation,
by a conditioning formula [6],

Gu(o,y) ,
P 1 — EO K X.,. ]_ r 00 — PO — .
yer?,y—o G(0,y) [Ko(X7)1(7<4o0)] [T = +o0]

We now justify that inversion by Lebesgue’s theorem. The idea is to bound,

when 7 is finite, Géii’yg) by a multiple of Ky(X,). We compare for that purpose

G(X,,y) with Ky(X,). Denote again by 7 the projection function on . We
distinguish two cases

G(X G(m(X5),1 G(o,1
If 7(Xr) € [o,m(y)], S5Y = S8 = %Y = Glo,y), by for-
mula 1 and the remark that this formula also implies by definition of Ky
and by taking the limit that Ko(X,) = H(X,,7(X;))Ky(r(X;)) and Ky(o) =
H (o, m(X-))Ko(m(X7)).

If 7(X;) & [o,7(y)], again ?{(:((;(f)) = ?{SEST)(()T()TZ)J)) . We also have, by defini-

tion and formula 1, Ky(m(X,)) = (H(o,7(X,)))~ !, hence the quotient above
equals H(o,7(X7))G(m(X7),y) = H(o,7(y))H(w(y), 7(X+))G(n(X7),y). We
know that G is bounded (see [7, 6]) and H is a probability, so it just remains

to compare H(o,7(y)) with G(o,y). But 25T = (G(r(y),y)) " and & is

bounded by %

Merging the two cases gives a constant 3 such that ?((:((;(3)) < BG(o,y),

which enables to use Lebesgue’s theorem and completes the proof of lemma 4.3.
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